
Fuzzy Relevant Logic

Dedicated to Newton da Costa on the occasion of his 70th
birthday.

Abstract

This paper raises the question of what a logic should be like if it is
both fuzzy and relevant. Two strategies are considered for answering
the question. In the first, standard world-semantics for relevant logics
are “fuzzified”. In the second, algebraic semantics for relevant logics are
simply reinterpreted, showing that we can think of standard relevant
logics as already fuzzy. The two strategies deliver a number of logics
with different properties, especially concerning the conditional.

1 Relevance, Vagueness and Paraconsistency
The study of paraconsistent logic is now about 50 years old. A major pioneer
of the subject, Newton da Costa, articulated many paraconsistent logics,
showing the way to this rich and important field. There are now very many
different kinds of paraconsistent logic; and they have been suggested with
very many different applications in mind.1 Two such applications, which will
concern us in this paper, are vagueness and relevance.

Let us start with relevance. The thought that there must be some connec-
tion between the antecedent and consequent of a true conditional is an ancient
and very natural one. A (propositional) relevant logic is one which respects
this intuition in the following form: whenever A → B is a logical truth, A
and B share a propositional parameter. In particular, then, 2 (p ∧ ¬p)→ q.
Strictly speaking, relevant logics need not be paraconsistent. For example,
Ackermann’s system Π′ was relevant. However, one of its primitive rules was

1For a survey, see Priest [6].
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the disjunctive syllogism, and (interpreting this as a rule of derivability) it
quickly gives p,¬p � q. Still, the same kind of intuition that rebels against
the logical truth of conditionals of the form (p ∧ ¬p)→ q rebels against the
validity of inferences of the form p,¬p ` q. It is not, therefore, surprising
that most relevant logics are paraconsistent as well. Indeed, Ackermann’s Π′

was reworked by Anderson and Belnap into their favourite relevant logic, E,
which is paraconsistent.

A quite different motivation for paraconsistency comes from the notion
of vagueness. Most of the normal predicates we operate with are vague.
Specifically, there appear to be transition areas where their applicability fades
out or fades in. Thus, for example, as a child grows into an adult, there would
seem to be a transitional period around adolescence, where they would seem
to be as much child as adult, or as little adult as child. What status does the
claim that the person in question is a child have during this period, when
they are symmetrically poised between childhood and adultery? The natural
answers are also symmetric: neither a child nor not a child; both a child and
not a child. Common sense seems to be comfortable with both possibilities,
though most logicians have taken only the second seriously. If one does,
though, one clearly needs a paraconsistent logic. For during the transition
period it is not true, for example, that the person is a chicken. Hence, this
cannot follow from the contradictory characterisation.

Actually, there seems to be more to vagueness than so far indicated.
Any simple semantic dichotomy or trichotomy appears to be inadequate to
characterise vagueness. As the child grows up, there seems to be no precise
line between being a child and not being a child; or between being a child
and neither being nor not being a child; or between being a child and both
being and not being a child. In virtue of this, it is very natural to suppose
that there are degrees of truth. A standard way of implementing this idea is
by representing truth values as real numbers in the closed interval [0, 1]. If
one gives a natural semantics for negation then, again, a paraconsistent logic
is obtained. For it is easy to arrange for the value of p ∧ ¬p to be greater
than that of q, making the inference from p ∧ ¬p to q invalid. We will come
back to the details of this in a moment.

All of this background will be familiar to most paraconsistent logicians.
Now to the main issue I want to raise. Intuitively, at least, there is noth-
ing incompatible about relevance and vagueness—quite the opposite: the
conditional ‘if John is a child and not a child then he is a chicken’, seems in-
tuitively quite rebarbative, even though the predicates in question are vague.
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Yet, though the studies of relevance and of degrees of truth have both given
rise to paraconsistent logics, relevant logics and fuzzy logics are currently
quite distinct. Standard relevant logics countenance only the truth values
true and false—though sometimes they may be allowed to occur in combi-
nation. And standard fuzzy logics are certainly not relevant. How, then, to
put these two ideas together? What should a fuzzy relevant logic be like?
Surprisingly, that question seems scarcely to have been raised.2 It is the
issue I want to address in the rest of this paper. I will consider two strate-
gies for producing a fuzzy relevant logic: “fuzzification” and reinterpretation.
The considerations are purely technical: I shall not discuss the philosophical
adequacy of any of the logics concerned here.

2 Strategy 1: Fuzzification

2.1 Fuzzy Logic

To see how fuzzification works, let us start with a clean statement of a fuzzy
logic. There are many such logics. Standard ones differ as to how they
give the truth conditions of connectives. Here, I will employ the connectives
that are probably most familiar to philosophers, the Łukasiewicz truth con-
ditions.3 It should be clear that fuzzification could be performed in exactly
the same way with others.

Truth values are represented by the closed interval, [0, 1]. If ν is an
assignment of truth values to propositional parameters, this is extended to
other formulas by the following clauses:

ν(¬A) = 1− ν(A)

2There have been some near misses. Peña’s fuzzy logic of [4] is an extension of the
relevant system E, but it is not a relevant logic. Closer, Slaney’s logic F of [8] is clearly in
the same family as standard relevant logics, but it, too, is not relevant. Sylvan and Hyde
[10] argue that a relevant logic without modus ponens is a suitable logic for vagueness, but
the logic is not fuzzy, having just the usual two truth values. In a sense, Boričić [1] fuzzi-
fies possible-world semantics for intuitionist and stronger logics. The construction adds
operators like ‘Is true to at least degree r’ to the language itself; but it leaves the seman-
tics two-valued. The same techniques can be applied to other possible-world semantics,
including those for relevant logics.

3Technically, standard fuzzy logics turn around the notion of a t-norm, which deter-
mines the behaviour of the conditional (and the conjunction of which it is the residuum).
Apart from the Łukasiewicz t-norm, the best known are those of Gödel and Product logics.
For details, see Hájek [2], esp. chs. 2-4.
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ν(A ∧B) = Min(ν(A), ν(B))

ν(A ∨B) = Max(ν(A), ν(B))

ν(A→ B) = ν(A)	 ν(B)

where:4
a	 b = 1 if a ≤ b
a	 b = 1− (a− b) if a > b

In many-valued logics validity is defined in terms of the preservation of
designated values. In standard fuzzy logics, the set of designated values is
taken to be {1}. We will be a little more general here. It is natural to think
of the designated values as the values of those things that are true enough
to be acceptable, and taking 1 to be the only such value seems a little over-
zealous. Technically, the set of designated values could be any subset of [0, 1].
However, if we are thinking of designated values in the way just explained,
it is natural to require the designated values to be closed upwards. Hence,
if 0 ≤ ε ≤ 1, any set of the form [ε, 1] is a possible set of designated values,
defining a corresponding notion of validity. Thus, we have Σ �ε B iff ∀ν(if
∀A ∈ Σ , ν(A) ≥ ε then ν(B) ≥ ε).5

ε is the lower bound of those degrees of truth that are acceptable; and
it is plausible to suppose that this is a contextual matter. In some contexts
(for example, choosing a safe drug where someone’s life is at stake), one
would require a higher degree than others (for example, choosing a coloured
paint where one is decorating a house). Hence, it makes sense to abstract
from context, and define an absolutely valid inference as one that is valid, no
matter what ε is; that is, Σ � B iff ∀εΣ �ε B. It is not difficult to establish
that this is equivalent to the following definition. Σ � B iff:

∀ν(Glb(ν[Σ]) ≤ ν(B))

where ν[Σ] = {ν(A): A ∈ Σ}, and Glb(X) is the greatest lower bound of X
(between 0 and 1).6

4In Gödel and Product logics, the definiens in the second clause is replaced by b, and
b/a, respectively.

5Alternatively, we could take the designated values to be the half-open interval, (ε, 1],
and replace the ‘≤’s with ‘<’s.

6Proof : Suppose that ∀ν(Glb(ν[Σ]) ≤ ν(B)). Now, suppose, for fixed ε, that ∀A ∈
Σ, ν(A) ≥ ε. Then Glb(ν[Σ]) ≥ ε. Hence Σ �ε B. Thus, Σ � B. Conversely, suppose that
for some ν, Glb(ν[Σ]) = ε > ν(B). Then for all A ∈ Σ, ν(A) ≥ ε > ν(B). Thus, Σ 2ε B,
and hence, Σ 2 B.
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In particular, if Σ = {A1, ...An}, then Glb(ν[Σ]) = Min(ν(A1), ..., ν(A1)),
so Σ � A iff ν(A1 ∧ ... ∧ An) ≤ ν(B) for all ν; and if Σ is empty, then
Glb(ν[Σ]) = 1. Thus, � B (i.e., φ � B) iff ∀ν ν(B) = 1.7

One of the most distinctive features of fuzzy logic, thus formulated, is
the failure of modus ponens—as one might expect, given its role in sorites
paradoxes. To see this, set ν(p) = 0.75, ν(q) = 0.5. Then ν(p → q) = 0.75.
Hence ν(p ∧ (p → q)) = 0.75 > ν(q). Note also that for any ν, ν(p →
(q → q)) = 1. Hence, � p → (q → q). As I observed in the introduction,
Łukasiewicz’ fuzzy logic is not a relevant logic.8 It is also known not to be
compact.9 It follows that it has no sound and complete proof theory. It
does have a proof theory sound and complete with respect to finite sets of
premises, though.10

2.2 Fuzzy Modal Logic

Before we turn to relevant logic, let us see how fuzzification works in the
slightly simpler case of modal logic. Specifically, let us see how to fuzzify
the simplest normal modal logic, K. As is well known, an interpretation for
K is a structure 〈W,R, ν〉, where W is a set of worlds, R is an arbitrary
binary relation on W , and for every w ∈ W , and propositional parameter, p,
ν(w, p) ∈ {0, 1}. (I will write ν(w,A) as νw(A).) The truth conditions for a
standard set of connectives are as follows. For all w ∈ W :

νw(¬A) = 1 iff νw(A) = 0

νw(A ∧B) = 1 iff νw(A) = νw(B) = 1

7So the logical truths of this logic coincide with the fuzzy logic in which 1 is taken to
be the sole designated value.

8If one takes 1 to be the only designated value, it is not even paraconsistent, since
α,¬α |=1 β.

9To see this, define A⊕B as ¬A→ B. Then it is not difficult to check that ν(A⊕B) =
Min(ν(A)+ν(B), 1). Let 1A be A, and (n+1)A be A⊕nA. Then if ν(A) > 0, the sequence:
ν(1A), ν(2A), ν(3A)... eventually takes the value 1. Let Σ = {p,¬1p,¬2p,¬3p, ...}. Then
it follows that for any ν, there is a B ∈ Σ such that ν(B) = 0. Hence, Σ � q. But there
is no finite Σ′ ⊆ Σ such that Σ′ � q. For let m be the greatest n such that nA ∈ Σ′. Let
ν(p) = 1/(m + 1). Then it is easy to check that if A ∈ Σ′, ν(A) ≥ 1/(m + 1). Now let
ν(q) = 0, to see that Σ′ 2 q.

10Observe that {A1, A2, ..., An} � B iff �1 (A1∧A2∧ ...∧An)→ B. Hence, an inference
with a finite set of premises is valid iff the corresponding conditional is logically true in
Łukasiewicz’ continuum-valued logic with designated value 1. This is well known to be
axiomatizable. See, for example, Hájek [2], ch. 3.
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νw(A ⊃ B) = 1 iff νw(A) = 0 or νw(B) = 1

νw(�A) = 1 iff for all w′ such that wRw′, νw′(A) = 1

A little thought shows that these may be expressed equivalently as:

νw(¬A) = 1− νw(A)

νw(A ∧B) = Min(νw(A), νw(B))

νw(A ⊃ B) = νw(A)	 νw(B)

νw(�A) = Glb{νw′(A);wRw′}

In particular, for the modal operator: if νw′(A) = 1 for all w′ such that
wRw′, Glb{νw′(A);wRw′} = 1; and if νw′(A) = 0 for some w′ such that
wRw′, Glb{νw′(A);wRw′} = 0.

The standard definition of logical consequence for K is:

Σ � A iff for every 〈W,R, ν〉 and w ∈ W , if νw(B) = 1 for all B ∈ Σ,
νw(A) = 1

Again, a little thought shows that this may be expressed equivalently as a
simple generalisation of the fuzzy definition of the previous section:

Σ � A iff for every 〈W,R, ν〉 and w ∈ W , Glb(νw[Σ]) ≤ νw(A)

Fuzzifying K is now completely routine. We simply take the above account,
where the truth conditions and definition of validity are expressed in the
equivalent terms, and replace {0, 1} by [0, 1]. Let us call the result FK
(fuzzy K).

The relationship between K and FK is not difficult to establish. For a
start, any K counter-model is a special case of an FK counter-model (where
everything takes the value 1 or 0). Hence if Σ �FK A, then Σ �K A. The
converse is not true, however. For modus ponens in valid in K, but invalid in
FK. (Just consider the one-world model corresponding to the counter-model
of the last section.)

As should be clear, other modal logics with world semantics can be fuzzi-
fied in exactly the same way. Thus, for example, fuzzified S4 is the same as
FK, except that R is required to be reflexive and transitive.11 Similarly, we

11Fuzzy versions of some modal logics, and in particular S5, are already known. See
Hájek [2], 8.3, for discussion and references.
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can fuzzify intuitionist logic by fuzzifying its world semantics. However, I
will not go into any of this here, since this is not a paper about modal logic.
The preceding material was just to illustrate the basic idea of fuzzification,
which we will now apply to relevant logic.

2.3 Fuzzifying Relevant World Semantics

Perhaps the simplest and most natural semantics for relevant logics are world-
semantics. Leave negation aside for a moment. A very simple world semantics
for a positive relevant logic is a structure 〈N,W, ν〉, where W is a set of
worlds; N is a subset of W , the normal worlds—the rest being non-normal;
and ν is an evaluation function that assigns a truth value, 0 or 1, to every
propositional parameter at every world, and to every conditional at every
non-normal world. Truth values are then assigned to other formulas by the
recursive clauses:

For w ∈ W : νw(A ∧B) = 1 iff νw(A) = 1 and νw(B) = 1

For w ∈ W : νw(A ∨B) = 1 iff νw(A) = 1 or νw(B) = 1

For w ∈ N : νw(A → B) = 1 iff for all w′ ∈ W such that νw′(A) = 1,
νw′(B) = 1.

(The truth values of conditionals at non-normal worlds are already taken
care of by ν.) The truth conditions may be expressed equivalently thus:

For all w ∈ W : νw(A ∧B) = Min(νw(A), νw(B))

For all w ∈ W : νw(A ∨B) = Max(νw(A), νw(B))

For all w ∈ N : νw(A→ B) = Glb{νw′(A)	 νw′(B); w′ ∈ W}

Validity is defined as truth preservation at all normal worlds of all interpre-
tations:

Σ � A iff for all 〈W,N,R, ν〉 and w ∈ N , if νw(B) = 1 for all B ∈ Σ, then
νw(A) = 1

Or equivalently:

Σ � A iff for all 〈W,N,R, ν〉 and w ∈ N , Glb{νw(B); B ∈ Σ} ≤ νw(A)

7



These semantics give the positive relevant logic H+. One of its characteristic
features is that it has no entailments that involve conditionals essentially.
That is, any logical truth of the form A → B is a substitution instance of
one of the form A′ → B′, where A′ and B′ contain no occurrences of →. H+

is, at any rate, a relevant logic.12

An axiom system for H+ is as follows.

A1 A→ A

A2 (A ∧B)→ A (A ∧B)→ B

A3 A→ (A ∨B) B → (A ∨B)

A4 A ∧ (B ∨ C)→ ((A ∧B) ∨ (A ∧ C))

R1 A,A→ B ` B

R2 A,B ` A ∧B

R3 A→ B,B → C ` A→ C

R4 A→ B,A→ C ` A→ (B ∧ C)

R5 A→ C,B → C ` (A ∨B)→ C

The axiom system is weakly complete (i.e., complete for the empty set of
premises). For strong completeness (i.e., completeness for arbitrary sets of
premises), the disjunctive forms of the rules of inference have to be added as
well. (The disjunctive form of R1 is: A ∨ C, (A → B) ∨ C ` B ∨ C. The
others are similar.)

To transform these semantics into a fuzzy logic, we simply replace the set
of truth values {0, 1} with the closed interval [0, 1], as we did for K, taking
the truth conditions and definition of validity in their equivalent forms. Let
us call this system FH+.

As with K, all two-valued interpretations are fuzzy interpretations. It
follows that if Σ �FH+ B then Σ �H+ B. In particular, then, FH+ is a
relevant logic. Moreover, again as for K, the implication does not go in the
opposite direction, since modus ponens fails in FK+. (Take an interpretation
with one world, w, which is normal, where νw(p) = 0.75, and νw(q) = 0.5.)

12For further details concerning this, and all the other facts about relevant logic referred
to in this paper, see Priest [6].
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This time, however, we can say a little more. It is easy to check that each
of the axioms of H+ is logically valid in FH+, and that each of the rules
of inference (including the disjunctive forms) preserves logical validity. It
follows that if �H+ B then �FH+ B. Thus, H+ and FH+ have the same
logical truths.13 Whether there is a complete proof theory for FH+, or even
just for finite sets of premises, is presently an open question.14

2.4 Negation

So much for a basic relevant fuzzy logic. How should this be extended to
include negation? There are standardly two treatments of negation that
may be joined to the semantics of H+ to give a full relevant logic.

The first of these relaxes the condition that ν be a function. Instead,
it is a relation, relating each formula to some, all, or none, of the truth
values, 1 and 0. One can pursue this strategy in the fuzzy case, too, but it
is problematic. Let νw[A] ⊆ [0, 1] be the set of values to which A is related
by νw. What now are the appropriate truth conditions for the connectives,
and definition of validity? Perhaps the most natural truth conditions are the
combinatorial ones. E.g.:

x ∈ νw[A ∧B] iff ∃y ∈ νw[A], ∃z ∈ νw[B], x = Min(y, z)

Thus, the values of A ∧ B are the values that one can get by combining all
the values of A and B in the usual way. And Σ � B iff for all 〈W,N, ν〉 and
w ∈ N :

Glb{Glb(νw[A]); A ∈ Σ} ≤ Glb(νw[B])

This certainly makes sense, but it is not the generalisation of the two valued
case that one would expect. For if, say, νw[A] = {0} and νw[B] = φ then
νw[A∧B] = φ. Consequently, A∧B 2 A. (In the non-fuzzy case, A∧B � A,
since if νw[A] = {0} and νw[B] = φ then νw[A ∧ B] = {0}. One false
conjunct is sufficient to make the conjunction false.) Insisting that for all
A and w, νw[A] be non-empty does not help, either. For then, for all w,
Glb(νw[p∧¬p]) ≤ 0.5 and Glb(νw[q∨¬q]) ≥ 0.5. Hence, � (p∧¬p)→ (q∨¬q).

13This is not the same for K: A ∨ ¬A is logically valid in K, but not FK.
14Another option for creating a fuzzy relevant logic here (and in what follows) is to

retain the definition of logical validity in its original form. That is, validity is defined in
terms of preservation of the value 1 (at all normal worlds). This gives a stronger logic
with the same set of logical truths. In particular, modus ponens is valid for this logic.
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Whether there are other ways of generalising the relational case, with
less untoward consequences, I do not know. But the other way of handling
negation in relevant logic is more straightforward. In this, an interpretation
is augmented with an operator on worlds, ∗ (the Routley star), such that for
all w ∈ W , w∗∗ = w. The truth conditions of negation are then:

νw(¬A) = 1 iff νw∗(A) = 0

Or equivalently:

νw(¬A) = 1− νw∗(A)

Adding this machinery to H+ gives the logic H.
To obtain an axiom system for H, we add the following rules and axioms

to those for H+:

A5 A↔ ¬¬A

R6 A→ B ` ¬B → ¬A

where A↔ B is (A→ B) ∧ (B → A).
The generalisation of this to the fuzzy case is obvious. Formulate the

semantics in the appropriate terms, and simply replace {0,1} with [0,1]. Call
the system produced FH. The relation between H and FH is the same as
that between H+ and FH+, and for exactly the same reason as before. The
logical truths of the two are the same; but for deducibility, FH is a proper
sublogic of H. Again, whether there is a complete proof theory for FH+, or
even just for finite sets of premises, is presently an open question.15

There remains, also, the question of what ∗ means, and why it should poke
its nose into the truth conditions of negation. This is an unresolved question
in relevant logics.16 As far as I can see, fuzzification does nothing to help the
matter; but neither does it seem to make the question any harder.17

15We cannot obtain a proof theory for the finite case as in fn.10 since in FH the equiv-
alence:

{A1, ..., An} �FH B iff �FH (A1 ∧ ... ∧An)→ B

fails from left to right. (The left hand side constrains behaviour only at normal worlds.)
On the other hand, if one defines A⊕B as ¬A→ B, then ⊕ does not have the monotone
properties required to refute compactness as in fn. 9, either.

16The best account on the market is, I think, Restall [7], which defines ∗ in terms of a
primitive notion of incompatibility.

17Other paraconsistent logics can be fuzzified in the same way that H is fuzzified here.

10



2.5 Ternary Accessibility Relations

As relevant logics go, H is a relatively weak one. The standard way of
making it stronger employs a ternary accessibility relation, R. This is added
to interpretations, and the truth conditions for → at non-normal worlds, w,
become:

νw(A→ B) = 1 iff for all y, z ∈ W such that Rwyz, if νy(A) = 1 then
νz(B) = 1

A little thought suffices to show that this is equivalent to:

νw(A→ B) = Glb{νy(A)	 νz(B): y, z ∈ W and Rwyz}

If we put no constraints at all on R, we have the relevant logic B. An axiom
system for this is obtained from that for H by deleting R3-R5, and replacing
them by the stronger:

A6 ((A→ B) ∧ (A→ C))→ (A→ (B ∧ C))

A7 ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)

R7 A→ B,C → D ` (B → C)→ (A→ D)

The semantics for B can be fuzzified in the obvious way, proceeding as before.
Call the logic obtained in this way FB. It is more complex in this case to
check that the new axioms/rules for B are valid/validity-preserving in FB;
but it is true. I leave it as an exercise for the committed reader.18 Hence
the relationship between B and FB is the same as that between H and FH.
Similar remarks also apply to its proof-theory.
Stronger logics in the relevant family are obtained by adding constraints on
the ternary relation R. A novelty here is that the natural correspondence
between constraints and axioms in standard relevant logics breaks down in
some of the fuzzy cases. For example, in the standard case, adding the
constraint that for all w ∈ W , Rwww, suffices to verify the axiom (A∧ (A→

Consider, for example, Da Costa’s positive-plus logics. To fuzzify these, we start with a
positive fuzzy logic, say Łukasiewicz’. We then add a non-truth-functional negation. The
value of ¬A is a number in [0, 1] that is independent of the value of A (though one may
put some constraints on the relationship between the two). The logics produced in this
way are fuzzy and paraconsistent, but they are not relevant.

18Details can be found in Priest [5], ch. 11.
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B))→ B. This is no longer the case once we fuzzify. For example, consider
the interpretation 〈W,N,R, ∗, ν〉, where W = {g, x}; N = {g}; for every
w ∈ W , Rwww; νx(p) = 0.8 and νx(q) = 0.6. Then νx(p → q) = 0.8. So
νx(p ∧ (p → q)) = 0.8, and νg((p ∧ (p → q)) → q) ≤ 0.8. A full study of
the connection between conditions on R and the corresponding axioms still
needs to be undertaken for the fuzzy case.

As for the Routley ∗, there is a philosophical problem concerning the
meaning of the ternary R. And as for ∗, fuzzification does nothing, as far as
I can see, to help with this matter or to hinder it.

3 Strategy 2: Reinterpretation

3.1 De Morgan Lattices

Let us now turn to the second approach to the construction of a fuzzy rele-
vant logic; and let us start by returning to standard fuzzy logic. A familiar
criticism of this is that degrees of truth do not seem to be linearly ordered.
‘Russell was old when he died’ might have a higher degree of truth than
‘Wittgenstein was old when he died’. But how does the degree of truth of
‘Australia has a small population’ relate to either of these?

The natural suggestion in response to this criticism is to trade in a linear
order of truth values for a partial order. The values are no longer real num-
bers, of course. In fact, we may not care too much what the members of the
order are. Let a semantic structure, then, be a partial order 〈D,≤〉.

If sentences take values in this order, how do the connectives function?
Conjunction and disjunction are easy. The order 〈[0, 1],≤〉 of Łukasiewicz
logic is a distributive lattice, and, in that lattice,Min andMax are the meet
and join, respectively. Hence, the natural assumption is that the partial order
is a distributive lattice, and that if ν(A) is the truth value of A then:

ν(A ∧B) = ν(A) ∧ ν(B)

ν(A ∨B) = ν(A) ∨ ν(B)

I write the lattice meet and join as ∧ and ∨, respectively, context sufficing to
disambiguate. I will employ the same convention for the algebraic operators
corresponding to other connectives.

What of negation? In the semantics of Łukasiewicz logic, negation func-
tions as in involution, that is, an order-inverting function of period two. We
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can generalise these aspects of its behaviour by supposing that our lattice
comes with an operator, ¬, such that:

if a ≤ b then ¬b ≤ ¬a

¬¬a = a

where ν(¬a) = ¬ν(a).
In summary, a natural generalisation of the semantic structure of a fuzzy

logic for conjunction, disjunction and negation, once we drop the condition
that it must be a linear order, is a distributive lattice with an involution.
Such structures are known as De Morgan lattices. Moreover, if conjunc-
tion, disjunction and negation relate to the lattice in the way indicated, we
have one of the well known semantics for a relevant logic. In particular,
A1, ..., An � B in First Degree Entailment iff ν(A1 ∧ ... ∧ An) ≤ ν(B) for
every De Morgan lattice, and every evaluation, ν, into the lattice.19

As a semantics for First Degree Entailment, the algebraic values would
normally be thought of as propositions or Fregean senses, and ≤ would be
thought of as some sort of containment relationship. But as we see, if we
reconceptualise the interpretation of these notions, a fuzzy relevant logic falls
straight out of the construction.20

3.2 De Morgan Groupoids

First Degree Entailment has no conditional connective. Can the preceding
considerations be extended to cover such a connective? The most versatile
algebraic semantics for relevant logic extends De Morgan lattices with new
algebraic operators. A structure is now of the form 〈D, e, ◦,→〉, where D is
a De Morgan lattice, ◦ and → are binary operators on the domain of the
algebra, and e is a member of the domain. ◦ is standardly thought of as
some sort of intensional conjunction, and e is thought of as the (value of
the) conjunction of all truths. If the new components satisfy the following
constraints:

e ◦ a = a

19This characterisation does not account for inferences with an infinite number of
premises; but this is no loss, since the logic is compact.

20For good measure, we might note that classical logic can be seen as a fuzzy logic in
this way too, since it is sound and complete with respect to the class of Boolean algebras.
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a ◦ b ≤ c iff a ≤ b→ c

if a ≤ b then a ◦ c ≤ b ◦ c and c ◦ a ≤ c ◦ b

a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c) and (b ∨ c) ◦ a = (b ◦ a) ∨ (c ◦ a)

then we have a structure called a De Morgan groupoid. And if we define
Σ � B to mean that for all such groupoids, and all evaluations into its domain,
ν, if e ≤ ν(A) for all A ∈ Σ then e ≤ ν(B), we have a semantics sound and
strongly complete with respect to the relevant logic B. In particular, A is a
logical truth iff for all ν, e ≤ ν(A). Stronger relevant logics in the family can
be obtained by adding constraints on ◦.21

What sense can be made of this in fuzzy terms? For present purposes,
◦ can be thought of as an auxiliary notion. The crucial question therefore
concerns e and →. If we think of the members of the algebra as degrees
of truth, then we may think of e as the lower bound of the things which
are true enough to be acceptable. That is, e ≤ a iff something with value
a is acceptable as true. What of →? The algebraic postulates tell us that
e ≤ a → b iff e ◦ a ≤ b iff a ≤ b. Thus, a conditional is acceptable iff the
truth value of the consequent is at least as great as that of the antecedent.

This is a plausible enough condition. One might have one’s reservations
about it, though. If, in a conditional, the truth value drops from antecedent
to consequent, but only a very little, shouldn’t it still be acceptable? (This
is certainly how it works in standard fuzzy logics if ε < 1.) Perhaps not.
On these semantics, we have to say that, strictly speaking, a conditional
of this kind is not acceptable, though it might be as close to acceptable as

21It is worth noting that standard fuzzy logics (taking 1 as the only designated value)
correspond to well know algebraic structures: MV algebras, G algebras, Π algebras, and
BL algebras. The most basic of these are BL algebras, the collection of which characterises
the logical truths common to all continuous t-norms. For details, see Hájek [2], chs. 3, 4.
All these algebras are special cases of De Morgan groupoids. ◦ is, in fact, the connective
whose truth conditions are given my the t-norm. In particular, a BL algebra is a groupoid
in which ◦ is commutative and associative (as in some relevant logics), and which also
satisfies the conditions:
a ◦ (a→ b) = a ∧ b
(a→ b) ∨ (b→ a) = 1

From a relevant point of view, the undesirablity of the second condition hardly needs to be
pointed out. The first fails in all standard relevant logics as well. A logic called monoidal
logic is given in Höhle [3]. This is characterised by the class of all residuated lattices. It
is therefore a sublogic of B.
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one might like. Indeed, given the possibility of sorites arguments, and the
validity of modus ponens in the logic B, it has to be like this. At any rate,
we see that, if we are prepared to live with the validity of modus ponens
and the consequences of this, we can think of the relevant logic B, and its
strengthenings, as already fuzzy logics.

3.3 Defeasible Conditionals

If one cannot live with these things, there is another way to proceed.22 We
add a new one-place function, δ, to the algebra, governed by the condition:

δa ≤ a

Intuitively, δa is a value a little below a, and represents the value to which
an antecedent would have to drop to make a conditional acceptable in the
strong sense of the previous section. Employing this, we can define a different
notion of conditionality, a . b, as δa→ b.

The easiest way to handle the new conditional proof-theoretically is to
add a corresponding monadic functor, δ, to the language, augment the axioms
with:

A8 δA→ A

R8 A↔ B ` δA↔ δB

and define A . B as δA → B. It is clear that the resulting axiom system
is sound with respect to the semantics. A simple modification of the com-
pleteness proof for the algebraic semantics shows that it is complete also.23

Let us call the logic obtained by extending B in this way DB (defeasible B).
Stronger logics of the same kind can be obtained by modifying the algebras
appropriate for stronger relevant logics in the same way.

The conditional . in DB is a relevant one. For suppose that A and C
share no propositional parameter. Then 2B A→ C. Consider a De Morgan
groupoid counter-model. Extend this by defining δa as a. This is a model
for DB, and in it, . collapses into →. Hence, 2DB A.C. But modus ponens
for . fails in DB and its extensions. To show this, we can construct a

22Hinted at in Sylvan and Hyde [10], p.13.
23Specifically, construct the Lindenbaum algebra in the usual way. R8 tells us that

the function δ on the algebra may be defined in the standard fashion, and A8 gives δ its
appropriate property.
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counter-model as follows. Let B be the Boolean algebra of all subsets of ω.
Let ◦ and→ collapse into the corresponding extensional connectives (so that
e = ω). This is a De Morgan groupoid. (In fact, it is an algebra appropriate
for every relevant logic.) Let δa be a with its least member removed (or if
a = φ, δa = φ). Augmented by δ, the algebra is appropriate for DB (and the
defeasible logics produced by using stronger relevant logics). To show that
p, p . q 2 q, set the values of p and q as ω and ω − {0}, respectively.

The conditional . is also a defeasible one. That is, p . q 2 (p∧ r) . q. For
a counter-model, take the same algebra as before, except that:

δa = a− {0} if 1 ∈ a
a− {2} otherwise

Take the values of p, q, and r, to be ω, ω − {0}, and ω − {1}, respectively.
In fact, DB has all the marks of a relevant conditional logic. In the world

semantics for these, A.B is true at a world, w, iff s(w, [A]) ⊆ [B], where [C]
is the set of worlds where C is true, and s is a function selecting subsets of
W . If we impose the constraint on s that s(w, [A]) ⊆ [A], we get the relevant
conditional logic obtained by adding the following proof-theoretic rules to
B.24

ID A→ B ` A . B

REA A↔ B ` (A . C)→ (B . C)

RPC (A ∧B)→ C ` ((D . A) ∧ (D . B))→ (D . C)

It is easy to check that all these rules are sound in DB. I suspect that the
rules are also complete (for the fragment without δ), but I have not been
able to prove this yet.

It is not an implausible thought that the conditional involved in sorites
arguments is a conditional of the kind given by DB: it certainly does not
seem to be an entailment. At any rate, the construction that we have just
been considering gives us another fuzzy relevant logic.25

24See Sylvan [9].
25Another algebraic way of proceeding is by modifying the notion of a De Morgan

groupoid. Everything is as in 3.2, except that the condition e ◦ a = a is weakened to
e ◦ a ≤ a. In effect, e ◦ a now plays the role of δa. The logic obtained in this way is clearly
a relevant logic, and, as may be checked, modus ponens for → fails. But → is not the
same as B in DB, since → is not defeasible. For suppose that e ≤ a→ b. Then e ◦ a ≤ b.
But a ∧ c ≤ a. So e ◦ (a ∧ c) ≤ e ◦ a. It follows that e ◦ (a ∧ c) ≤ b, i.e., e ≤ (a ∧ c)→ b.
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4 Conclusion
In this paper, we have examined two semantic strategies for constructing
fuzzy relevant logics. The first fuzzifies standard world-semantics for relevant
logics, changing the discrete truth values to continuum-valued ones. This
construction gives sublogics of the corresponding standard relevant logics.
In particular, modus ponens is no longer valid. This is as one might expect
in a fuzzy logic where 1 is not taken to be the only designated value. In the
second strategy, we simply reinterpret the algebraic semantics for relevant
logic, thinking of the algebraic values as degrees of truth. The upshot of this
is that standard relevant logics can already be thought of as fuzzy logics. In
particular, then, in these semantics modus ponens holds. These semantics
can be extended by a “decrease in value” operator, δ, which can be used to
define a defeasible relevant conditional, for which, again, modus ponens fails.
Which, if any, of these logics is philosophically the best for their intended
application is another matter. But at least we now have some fuzzy relevant
logics to philosophise about.26

26Versions of the paper were given at the Second Word Congress on Paraconsistency, Saõ
Paulo, May 2000, and a meeting of the Australasian Association for Logic, Queensland,
June 2000. I would like to thank those present for their helpful thoughts, and especially
Daniele Mundici, Greg Restall, and Peter Woodruff. Helpful comments were also made
by anonymous referees.
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